Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene.

نویسندگان

  • Nichole Cates Miller
  • Sean Sweetnam
  • Eric T Hoke
  • Roman Gysel
  • Chad E Miller
  • Jonathan A Bartelt
  • Xinxin Xie
  • Michael F Toney
  • Michael D McGehee
چکیده

We compare the solar cell performance of several polymers with the conventional electron acceptor phenyl-C61-butyric acid methyl ester (PCBM) to fullerenes with one to three indene adducts. We find that the multiadduct fullerenes with lower electron affinity improve the efficiency of the solar cells only when they do not intercalate between the polymer side chains. When they intercalate between the side chains, the multiadduct fullerenes substantially reduce solar cell photocurrent. We use X-ray diffraction to determine how the fullerenes are arranged within crystals of poly-(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) and suggest that poor electron transport in the molecularly mixed domains may account for the reduced solar cell performance of blends with fullerene intercalation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of dihydronaphthyl-based [60]fullerene bisadduct regioisomers on polymer solar cell performance.

The effects of fullerene bisadduct regioisomers on solar cell performance have been examined for the first time and the two substituent positions on C(60) have been found to have a large impact on the solar cell performance.

متن کامل

Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation.

We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fuller...

متن کامل

One-pot selective synthesis of a fullerene bisadduct for organic solar cell applications.

A single isomer of fullerene bisadduct, PC61PF, was obtained from commercially available fullerene derivative, PC61BM, in one pot over two steps. The tether-directed remote functionalization approach provided a very simple and fast method to produce a single isomer of fullerene bisadduct with good yield and easy purification. Bulk heterojunction organic solar cells containing the bisadduct was ...

متن کامل

Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinh wileyonlinelibrary.com While recent reports have established signifi cant miscibility in polymer:fullerene blends used in organic solar cells, little is actually known about why polymers and fullerenes mix and how their mixing can be controlled. Here, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and molecular simulations are us...

متن کامل

Quantum Mechanical Calculations of Photovoltaic and Photoelectronic Properties of Oligoselenophene/Fullerene BHJ Solar Cells

To model the active layer in the hetero-junction solar cells, the C60, C70, PC60BM, PCBDAN fullerenes as acceptor, and (OS)n=1) oligoselenophenes as donor were considered. The (OS)n=14/C60, (OS)n=14/C70, (OS)n=14/PC60BM, and (OS)n=14/PCBDAN blends as a model of the active layer in the BHJ solar cell were chosen, and the optoelectronic properties were studied. The calculated efficiency of these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2012